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Abstract—As the volume of traffic flows surges, providing
Quality-of-Service (QoS) guarantees to flows by fair queueing has
never been more challenging in Network Function Virtualization
(NFV). There has been a recent effort in both industry and
academia to develop fair queueing algorithms across multiple
resources in NFV. However, all existing works fail to support
hierarchical scheduling, a crucial feature that also provides QoS
guarantees to grouped flows on tenant boundaries. In this paper,
we present two new multi-resource fair queueing algorithms that
support hierarchies, collapsed Hierarchical Dominant Resource
Fair Queueing (collapsed H-DRFQ) and dove-tailing H-DRFQ,
both of which provide hierarchical share guarantees. Through
formal analysis, we find that the dove-tailing H-DRFQ outper-
forms collapsed H-DRFQ by providing a smaller delay bound.
However, according to the simulation results, both algorithms have
their pros and cons. Dove-tailing H-DRFQ benefits to the flows
with more complex hierarchies, while collapsed H-DRFQ is better
for the flows with simpler attribution structures. Meanwhile, our
simulation shows that both H-DRFQ algorithms can achieve near-
perfect fairness.

I. INTRODUCTION

Network functions (NFs), also known as middleboxes, are
ubiquitous today [1], [2]. They are deployed to perform vari-
ous processing functions, ranging from firewalling, proxies to
WAN optimizers, on the traffic flows passing through them.
An emerging and promising technology, Network Function
Virtualization (NFV), moves packet processing from dedi-
cated hardware middleboxes to Virtualized Network Functions
(NFVs) running on commodity (e.g., x86 based systems)
servers [3], [4]. As the volume of traffic surges [5], it is
increasingly important to provide Quality-of-Service (QoS)
guarantees across traffic flows. Fair queueing is a fundamental
tool to achieve this objective. With fair queueing, a scheduler
determines the order in which packets from multiple flows
are forwarded on a shared resource, allocating a prescribed
fair share to each flow [6]. Achieving fair queueing in NFV,
however, is particularly challenging, due to the diversity in
traffic characteristics and the heterogeneity of traffic demands.

Usually, flows are grouped and organized on tenant bound-
aries in NFV use cases [7], [8]. A tenant represents some
aggregate of flows that are grouped according to administrative
affiliation, protocol, traffic type, or other criteria [9], [10]. In
a multi-tenant environment, there exists a multi-level hierarchy
(i.e., a multi-level tree) specifying the organizational structure
of traffic flows, with its leaves to represent individual flows
and its internal nodes to represent tenants. For such workloads,
it is desirable for the scheduler to provide QoS guarantees in
multiple levels, individual flows as well as internal tenants.

In addition, flows are also characterized by a high degree
of demand diversity across multiple resources. Different VNFs
required by different flows consume vastly different amount
of resources. For example, basic forwarding functionality uses
more link bandwidth than other resources. IPSec encryption,
on the other hand, is CPU-bound. Payload analyses on produc-
tion traces from Intel, Google and Facebook [11], [12], [13]
confirmed that flows may consume vastly different amount
of resources of CPU, memory, I/O bandwidth and network
bandwidth.

Despite the extensive studies in multi-resource fair queueing
recently, no existing algorithm is designed to support hierar-
chies. Specifically, Ghodsi et al. [11] proposed the first work
on multi-resource fair queueing, named Dominant Resource
Fairness Queueing (DRFQ), in which the flows receive roughly
the same packet processing time on their respective domi-
nant resources — the resources they respectively require the
most processing time on. From DRFQ, a string of follow-
up papers [14], [15], [16], [17], [18] modified, developed
and extended DRFQ. However, their focus has so far been
primarily on flat or non-hierarchical flow scheduling. In fact,
with hierarchies, even the packet orders of internal nodes are
unclear: each internal node acts as a sub-scheduler and its
order of packets is determined by the scheduling policy applied
to its children. Worse, as we shall show in Section III-D,
naive extensions of DRFQ to support hierarchies violate the
hierarchical share guarantees, the prescribed fair share of
resources that each node in the hierarchy at least gets.

In this paper, we propose the first rigorous study on the
fair queueing algorithms that supports hierarchies in multi-
resource environments such as VNFs. We propose two new
multi-resource fair queueing algorithms, collapsed Hierarchical
Dominant Resource Fair Queueing (collapsed H-DRFQ) and
dove-tailing H-DRFQ, that support hierarchical scheduling by
providing hierarchical share guarantees. The main idea of
collapsed H-DRFQ is to convert the hierarchy into a flat
tree and then use the flattened tree as a DRFQ scheduler,
while dove-tailing H-DRFQ follows the thought to execute
DRFQ within each set of sibling nodes (nodes that share
the same parent). Although both H-DRFQ algorithms support
hierarchies, their scheduling orders of packets are different.
To quantify the differences between collapsed H-DRFQ and
dove-tailing H-DRFQ, we mathematically formalize the delay
bound of a packet in each of both H-DRFQ algorithms.
Theoretical analysis shows that dove-tailing H-DRFQ always
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outperforms collapsed H-DRFQ by providing a smaller delay
bound. However, according to the experimental results, both
algorithms have their pros and cons. The actual delays a packet
experiences in collapsed H-DRFQ are smaller than those in
dove-tailing H-DRFQ when the flow is in the higher levels,
levels with smaller number of edges to the root node of the
hierarchy, while dove-tailing H-DRFQ works better for flows
in the lower levels.

To summarize, our contributions in this work are four-fold:
• We identify the problem of hierarchical multi-resource fair

queueing.
• We propose two hierarchical multi-resource fair queueing

algorithms, collapsed H-DRFQ and dove-tailing H-DRFQ,
that provide hierarchical share guarantees. (Section IV)

• We bound the scheduling delays of packets in both al-
gorithms, showing dove-tailing H-DRFQ works better.
(Section V)

• We conduct extensive simulations to evaluate the perfor-
mances of H-DRFQ. The results show that both H-DRFQ
algorithms have their own advantages. (Section VI)

II. RELATED WORK

Traditionally, for a single resource, many classic fair queue-
ing algorithms, such as WFQ [19], GPS [6], DRR [20], and
SFQ [21], were proposed to provide share guarantees. In this
section we present further details on most closely related
works in the literature. We categorize these works between
hierarchical and multi-resource fair queueing.

Hierarchical Fair Queueing: The hierarchical structures of
traffic flows are common in any type of networks [22], [8].
To provide hierarchical share guarantees, several hierarchical
scheduling algorithms are proposed in [23], [9], [10], [24].
These works extend the fair queueing problem from a one-
level flat tree to a multi-level hierarchy. However, none of these
works support flow scheduling across multiple resources. Our
work bridges this gap and thus complements existing studies.

Multi-resource Fair Queueing: With the development of
NFV, an increasing number of papers has studied the multi-
resource fair queueing problem in a middlebox. Notably, Gho-
disi et al. propose DRFQ that achieves DRF [12] in time do-
main. That is, flows in DRFQ receive roughly the same packet
processing time on their respective dominant resources. We will
review the mathematical details of DRFQ in Section III-D. Base
on DRFQ, a string of flow-up papers [14], [15], [16], [17], [18]
modified, developed and extended DRFQ. However, none of
these works consider the hierarchical workloads submitted to a
middlebox that supports multi-tenancy. Our work bridges this
gap and thus complements existing studies.

III. PROBLEM FORMULATION AND CHALLENGES

We begin by introducing the hierarchical fair queueing
model in Section III-A and III-B, introducing the definition of
hierarchical share guarantee in Section III-C, reviewing DRFQ
in Section III-D and then arguing the inefficiencies of naive
extensions of DRFQ to support hierarchies in Section III-E.
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(a) Simple example of a hierarchy.
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(b) First Attempt

Fig. 1. Example of the naive extensions of memoryless DRFQ

A. Notations in Hierarchical Scheduling

The requirements of hierarchical workloads of traffic are
specified with a weighted tree (see Fig. 1a). The root node
represents a VNF scheduler and a leaf node represents a
physical flow that ultimately being assigned resources. Each
non-leaf node is connected to its parent by a logical queue.

A node in the tree is denoted as fi, where i is a list of
numbers that describe how the node can be found starting from
the top of the tree and going down, left to right. For example,
f2,1 is found by starting at the root, picking its second (from
left) child, and picking that child’s first child. The root node is
fR (or R). Each flow i is associated with a weight φi. Without
loss of generality, we assume that the sum of weights of all leaf
nodes in the hierarchy to be equal to 1. The parent of flow i is
denoted as P (i), the set of children of flow i is denoted as C(i),
and the set of sibling nodes of flow i is denoted as Sib(i). Then
we have

∑
j∈C(i) φj = φi. For each flow i with H ancestors

in a hierarchy, we write Ph(i) to refer to its hth predecessor
for h = 0, 1, . . . , H , where P 1(i) = P (i) and PH(i) = R.

B. Design Objective

Let m be the number of resource types under consideration.
Denote the kth packet of flow i as pki . The dominant resource of
a packet is defined as the one that requires the maximum packet
processing time. Specifically, let ski,r be the packet processing
time of pki at resource r, the dominant resource of pki is rpk

i
=

argmaxr s
k
i,r. We refer the processing time requirements {ski,r}

(r = 1, . . . ,m) of a packet pki as its packet profile. And we
denote μk

i as the processing time of pki at its dominant resource
(i.e., μk

i = maxr s
k
i,r).

The main idea of an ideal hierarchical multi-resource fair
queueing algorithm is to equalize the packet processing time
between each pair of sibling nodes in a hierarchy on their
respective dominant resources. If we denote Wi(t1, t2) as the
total processing time consumed by flow i on its dominant
resource during time interval [t1, t2], then we hope that

Wi(t1, t2)

φi
=

Wj(t1, t2)

φj
, (1)

between any pair of sibling nodes fi and fj . This objective
is only achieved when packets in flows are infinitely divisible.
Since in practice the packets are not divisible, we will design
algorithms to approximate this ideal fairness.

In many workloads, packets within the same flow have
similar packet profiles. Therefore, throughout, we assume that
packets within the same physical flow have the same packet
profiles and the dominant resource of a physical flow is the
dominant resource of any of its packet. That is, for all leaves,
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we have ski,r = si,r, where si,r denotes the packet processing
time of any packet of leaf flow i at resource r. Notice that
under this assumption, an internal node in a hierarchy may still
experience packets with different packet profiles.

C. Hierarchical Share Guarantee

Hierarchical share guarantee is a key property that guarantees
flow and tenant isolations in hierarchical scheduling. For non-
hierarchical scheduling, DRFQ ensures that any active flow
i with weight φi receives at least φi

φq
fraction of one of the

resource it uses [11], where q denotes a VNF scheduler, and
φq =

∑
j∈C(P (i)) φj . We extend this guarantee to hierarchical

scheduling as follows:

Hierarchical Share Guarantee: A node in a hierarchy is
supposed to receive at least φi

φP (i)
fraction of one of the

resources it uses from its parent node.

D. Review: Multi-Resource Fair Queueing for Packet Process-
ing (DRFQ)

DRFQ makes non-hierarchical scheduling decisions for flows
in a middlebox. Flows in DRFQ receive roughly the same
packet processing time on their respective dominant resources.
Specifically, according to the characteristics of the packet
profiles, [11] introduced a tradeoff between memoryless DRFQ
and dove-tailing DRFQ, which can be briefly illustrated as
follows.

Memoryless DRFQ: Memoryless DRFQ applies to flows
where different packets from the same flow have the same
packet profiles. In memoryless DRFQ, a flow’s current share
of resources should not depend on its past share.

Consider two flows in a middlebox sharing two types of
resources, f1 sends packets with profile 〈2, 1〉, f2 sends packet
with profile 〈1, 2〉. Then the dominant resource of f1 is r1
while the dominant resource of f2 is r2. Memoryless DRFQ
schedules two flows alternatively such that the processing time
of f1 on r1 and the processing time of f2 on r2 are the same.

Dove-tailing DRFQ: Dove-tailing DRFQ applies flows
where different packets from the same flow have different
packet profiles. Dove-tailing allows the scheduler to have
memory of past processing time given to a flow.

For example, a flow that sends a total of 10 packets,
alternating in processing time requirements 〈2, 1〉 and 〈1, 2〉,
respectively, is supposed to be treated the same as a flow that
sends 5 packets, all with processing time 〈3, 3〉.
E. Inefficiencies of Naive DRFQ Extensions to Support Hier-
archies

First Attempt: Since the weight of a parent node is equal to
the summation of the weights of its children, one intuition is to
treat the hierarchy as a flat tree and the weight of each leaf node
in the flat tree is exactly its weight in the hierarchy. Although
this method always works well for a single resource [24], it
turns out to be invalid for multi-resource scheduling. Specifi-
cally, it violates the hierarchical share guarantee.

Consider the hierarchy shown in Fig. 1a, our first attempt is
to treat this hierarchy as the flat tree shown in Fig. 1b, then the

scheduler can apply memoryless DRFQ to the three physical
flows directly. After an initial start, DRFQ obtains a periodic
pattern in which the ratio of packet numbers scheduled in the
three flows is 40 : 1 : 1, making the length of the period to be 51
time units. As a result, f2,1 gets resource shares 〈 1

51 ,
10
51 〉, while

f2,2 gets resource shares 〈 1051 , 1
51 〉, leading their parent f2 to

get resource shares 〈 1151 , 11
51 〉. Therefore, the dominant resource

share of f2 is 11
51 , much smaller than its guaranteed share 0.5,

thus violates the hierarchical share guarantee.
Second Attempt: Since the packet profiles within the same

physical flow are assumed to be the same, the second intuition
is to apply memoryless DRFQ to each set of sibling nodes.
Surprisingly, this method also works well for a single resource
but violates the hierarchical share guarantee in multi-resource
scheduling.

Still, consider the hierarchy shown in Fig. 1a, after applying
memoryless DRFQ to f2,1 and f2,2, the logical queue on node
f2 can be regarded as a flow alternating 〈1, 10〉 and 〈10, 1〉. We
then apply memoryless DRFQ to f1 and f2. After an initial
start, DRFQ obtains a periodic pattern in which the ratio of
packet numbers scheduled in the three flows is 20 : 1 : 1,
making the length of the period to be 31 time units. Similar
to the first intuitive method, here f2 gets a dominant share of
11
31 , smaller than its guaranteed share 0.5. Therefore, the second
attempt still fails to support hierarchical fair queueing.

The failure of naive memoryless DRFQ extensions to the
hierarchical fair queueing necessitates alternative scheduling
mechanisms, which are the main theme of the next section.

IV. HIERARCHICAL MULTI-RESOURCE FAIR QUEUEING
FOR PACKET PROCESSING

We begin by introducing collapsed H-DRFQ in Section IV-A
and then dove-tailing H-DRFQ in Section IV-B.

A. Collapsed Hierarchical Multi-resource Fair Queueing

One well-known approach, which we call collapsed hierar-
chies [24], converts a hierarchical scheduler into a flat one.
The idea is to take the hierarchy specification and compute
what the corresponding weight would be for each leaf node
if the hierarchy is flattened. As it was claimed in our first
attempt in Section III-D, although this method works well for a
single resource, it turns out to be non-trivial for multi-resource
scheduling since the hierarchical share guarantees for internal
nodes may be violated. We design an algorithm, collapsed H-
DRFQ, that also flattens a hierarchy while still being able to
provide the hierarchical share guarantee.

Given a hierarchy where all leaf flows are backlogged, we
can always regard an internal node as a virtual backlogged flow
that submits packets with fixed packet profiles. For example,
in Fig. 1a, f2 can be regarded as a flow submitting 〈11, 11〉
continuously. We refer to this packet profile as virtual packet
profile. In order to simplify the computation, we use the normal-
ized packet profiles computed using lki,r =

ski,r
μk
i

to generate the
virtual packet profile of internal nodes, where lki,r denotes the
normalized packet processing time of pki at resource r. At this
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Fig. 2. Weight determination for the leaf node.

point, we are able to formally define the virtual packet profile
of an internal node (i.e., an internal scheduler) as following:

Definition IV.1 (Virtual Packet Profile). The virtual packet
profile of a scheduler q on packet pkq is defined as the sum of
the normalized packet processing time of all busy children of
q on their respective resources. That is,

skq,r =
∑

i∈C(q)

lki,rφi. (2)

Since all packets within the same leaf node submit demands
with the same packet profiles, i.e., si,r = ski,r, each internal
node will always keep a constant virtual packet profile during
any of its backlogged period as long as its set of busy children
does not change.

As a concrete example, consider an internal flow f̃ that has
two children flow 1 and flow 2 with packet profiles 〈4, 2〉 and
〈1, 2〉 that share two resources. Thus the normalized packet
profiles of flow 1 and flow 2 are 〈 44 , 2

4 〉 = 〈1, 0.5〉 and 〈 12 , 2
2 〉 =〈0.5, 1〉, respectively. The weight of flow 1 is 0.4 and the weight

of flow 2 is 0.2. Therefore, the packet processing time of f̃ on
r1 is 1 × 0.4 + 0.5 × 0.2 = 0.5, while the value on r2 is
0.5×0.4+1×0.2 = 0.4. This defines the virtual packet profile
of f̃ to be 〈0.5, 0.4〉.

Now we compute the weight for each leaf node in the flat-
tened tree. Consider a minimum general sub-hierarchy, which is
able to form any hierarchical tree through iteration (see Fig. 2a).
Let ni be the number of packets scheduled in fi from the
hierarchy shown in Fig. 2a and n′

i be the number of packets
scheduled in the same node fi but from the flat tree shown in
Fig. 2b. Assume all the flows are backlogged throughout the
example. Then achieving DRFQ allocation between each pair
of sibling nodes in Fig. 2a gives us

n2,1μ2,1

φ2,1
=

n2,2μ2,2

φ2,2
(3a)

n1μ1

φ1
=

n2μ2

φ2
(3b)

n2s2,r = n2,1s{2,1},r+n2,2s{2,2},r, (r = 1, . . . ,m) (3c)
Combining (2) and (3c), we have

n2,1 =
φ2,1

μ2,1
n2; n2,2 =

φ2,2

μ2,2
n2. (4)

Meanwhile, achieving DRFQ allocation between each pair of
sibling nodes in Fig. 2b we have

n′
1μ1

φ1
=

n′
2,1μ2,1

φ′
2,1

=
n′
2,2μ2,2

φ′
2,2

. (5)

In order to convert the hierarchy into a flat one, we hope that
the allocations received by corresponding leaves in Fig. 2a and
Fig. 2b are exactly the same. That is, n1 = n′

1, n2,1 = n′
2,1

and n2,2 = n′
2,2. Combining (3b), (4) and (5), we have

φ′
2,1 =

φ2φ2,1

μ2
; φ′

2,2 =
φ2φ2,2

μ2
. (6)

Therefore, in a general case where the hierarchy has an
arbitrary tree topology, the weight for each leaf node in the
flattened tree is

φ′
i = φi

H−1∏

h=1

φPh(i)

μPh(i)

. (7)

More formally, we present the pseudo-code of collapsed H-
DRFQ in Algorithm 1. Each time flows are added, removed,
or change their demand status, the weights are recomputed.

Algorithm 1: Collapsed H-DRFQ Pseudo-code
Function Collapsed H-DRFQ(fi):

for each leaf node fi do
Calculate φ′

i

Insert fi in the flat tree with weight φ′
i

end
Apply memoryless DRFQ to the flattened tree

Algorithm 2: Dove-tailing H-DRFQ Pseudo-code
Function Dove-tailing H-DRFQ(fi):

if fi is a leaf node then
return

end
if not each child of fi is visited then

Choose an unvisited child fi′ of fi
Run Dove-tailing H-DRFQ(fi′)

end
Apply dove-tailing DRFQ to fi
Enqueue the scheduling result to fi’s parent’s logical

packet queue
Mark fi as visited

B. Dove-tailing Hierarchical Multi-resource Fair Queueing

Besides the collapsed H-DRFQ that firstly transforms a
hierarchy into a flat tree, an alternative algorithm is to schedule
sibling nodes directly in a DRFQ manner. In this algorithm,
each non-leaf node can be regarded as a logical queue with
packets in the order submitted to that node from its children,
which we refer to as the logical packet profile. Formally, we
give the definition as following,

Definition IV.2 (Logical Packet Profile). At any given time t,
the logical packet profile of a packet of a scheduler q is defined
as the head-of-line packet profile of its child that is currently
being scheduled by the scheduler.

The logical packet profile provides another way to consider
the packet processing time requirements of internal queues
other than the virtual packet profile. Packets submitted to an
internal node from different children may be heterogenous,
leading the internal node to behave as a logical queue over
time, with multiple packets that have different packet profiles.
Therefore, it is desirable for the scheduler to have memory of
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Fig. 3. Example hierarchy

the past packets submitted to each internal queue. This feature
is referred to as dove-tailing in [11]. As a result, our second H-
DRFQ algorithm uses dove-tailing DRFQ between each pair of
sibling nodes. We refer to this method as dove-tailing H-DRFQ.

As a concrete example (see Fig. 3a), implementing dove-
tailing DRFQ to the sub-scheduler f2 makes its logical queue
a flow with packet profiles 〈1, 2〉 and 〈2, 1〉 alternatively.
Thereafter, implementing dove-tailing DRFQ to fR makes its
logical queue a flow with a periodic pattern in which 3 packets
from f1, one packet from f2,1 and one packet from f2,2 are
scheduled.

More formally, we present the pseudo-code for dove-tailing
H-DRFQ in Algorithm 2.

V. DELAY ANALYSIS OF H-DRFQ
In this section, we study the differences between the two H-

DRFQ algorithms by comparing their delay bounds. We begin
by using a simple example to intuitively show the discrepancies
in scheduling orders of packets between the two algorithms in
Section V-A. Then we mathematically describe and compare
their delay bounds in Section V-B and V-C.

A. A Simple Example Showing the Discrepancy

We use the example in Fig. 3a to coarsely illustrate the
discrepancies between collapsed H-DRFQ and dove-tailing H-
DRFQ. Assume all the three flows are backlogged throughout
the example.

Fig. 4a shows how collapsed H-DRFQ works with the
example hierarchy, and Fig. 4b shows how dove-tailing H-
DRFQ works with the example. Collapsed H-DRFQ firstly
transforms the hierarchy into a flat tree shown in Fig. 3b, and
then use the flattened tree as a memoryless DRFQ scheduler.
As shown in Fig. 4, after an initial start, the lengths of the
periodic patterns of both algorithms are the same. That is, in
each periodic pattern, three packets from f1, one packet from
f2,1 and one packet from f2,2 are scheduled. However, their
packet orders are different from each other. The scheduling
order of flows using collapsed H-DRFQ is f1, f1, f1, f2,1, f2,2
in each period, while the scheduling order of flows using dove-
tailing H-DRFQ is f1, f2,1, f1, f1, f2,2 in each period.

The differences in scheduling orders may lead to different
delays experienced by the same packet. Therefore, next we will
analyse the scheduling delay packets experience to illustrate
the differences between collapsed H-DRFQ and dove-tailing
H-DRFQ.

B. Multi-resource WFI

To quantify the delay experienced by a packet, a metric
called Worst-case Fair Index (WFI) was introduced in [9] to
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Fig. 4. A scheduler that implements H-DRFQ algorithms.

characterize non-hierarchical fair queueing schedulers for a
single resource (e.g., link sharing), which can be generalized
as following.

Definition V.1 (T-WFI). A scheduler q is said to guarantee a
Time Worst-case Fair Index (T-WFI) of Ai,q for flow i, if for
any time t, the delay of a packet arriving at t is bounded above
by the following,

dki − aki ≤ Qi(a
k
i )

ci
+Ai,q, (8)

where aki and dki are the arrival and departure times of pki ,
respectively. ci is the rate guaranteed to flow i, which is φi

φq
of

the total rate of the link cq . Qi(a
k
i ) is the number of bits in the

queue at time t.

Intuitively, Ai,q represents the maximum time a packet
coming to an empty queue need to wait before receiving its
guaranteed service share. That is, Ai,q represents the delay
bound of flow i. An important observation is that in an ideal
fluid system in which the packets are infinitely divisible and
multiple flows can receive service simultaneously, Ai,q is 0
since fi can receive its guaranteed share immediately after its
arrival. However in a packet scheduling system, Ai,q must be
larger than zero as a new arrival packet has to wait until the
first arrivals finish in any one of the resources.

By multiplying ci on both sides of the inequality in (8), it is
easy to transform the inequality into the form of following,

Wi(a
k
i , d

k
i ) ≥

φi

φq
Wq(a

k
i , d

k
i )− αi,q, (9)

where Wj(a
k
j , d

k
j ) is the total amount of bits served during

[akj , d
k
j ], and Wj(t1, t2) = cj(t2 − t1). φi

φq
is the service share

guaranteed to fi. αi,q represent a measurement of WFI in unit
of bits instead of seconds.

However, if we extend (9) to multiple resource settings, the
ideal service share received by fi may not be φi

φq
. We next

propose a new theorem to rigorously quantify the ideal service
share fi received in DRFQ.

Theorem V.1. In DRFQ, the ideal service share received by
flow i from its scheduler q is

Wi(t1, t2)

Wq(t1, t2)
=

φi

μq
, (10)
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Proof: According to the definition of virtual packet profile
in Definition V.1, for any multi-resource scheduler q, we have
Wq(t2, t2) = μqnq . Meanwhile, the processing time of flow
i on its dominant resource is Wi(t1, t2) = μini. According
to (4), we have ni =

φi

μi
nq . Therefore, the ideal service share

received by flow i from its scheduler q should be
Wi(t1, t2)

Wq(t1, t2)
=

μini

μqnq
=

μiφinq

μiμqnq
=

φi

μq
. (11)

At this point, we are able to introduce a new definition of
WFI in Definition V.2 that further applies to multi-resource
packet processing.

Definition V.2 (M-WFI). A server q is said to guarantee a
Multi-resource Worst-case Fair Index (M-WFI) of αi,q , if for
any interval [t1, t2] within its backlogged period, the following
holds

Wi(a
k
i , d

k
i ) ≥

φi

μq
Wq(a

k
i , d

k
i )− αi,q, (12)

where Wj(t1, t2) is the total processing time served by fj on
its dominant resource during the time interval [t1, t2]. φi

μq
is the

ideal service share that fi supposed to receive in DRFQ.

In M-WFI, αi,q represents the maximum processing time
a packet pki coming to an idle flow i need to wait before
receiving its deserved service share. That is, αi,q represents
the processing time delay bound of flow i in DRFQ.

C. Delay Bounds of H-DRFQ

DRFQ has already rigorously bounded the delay of a packet
that arrives when a flow is idle [11], which is shown in the
next lemma. In this subsection, s↑i,r denotes maxk s

k
i,r.

Lemma V.2. Assume packet pki of flow i arrives at t, and
assume flow i is idle at time t. Assume all packets have non-
zero demand on every resource. Then the maximum delay to
start serving packet pki , αi,q , is bounded by

αi,q ≤ max
r

(
n∑

j=1,j �=i

s↑j,r). (13)

We next bound the delay of a packet in H-DRFQ. The delay
bounds of collapsed H-DRFQ and dove-tailing H-DRFQ are
shown in Theorem V.3 and V.4, respectively. We follow the
same assumption with [11] that each packet has a non-zero
demand for every resource.

Theorem V.3. The collapsed H-DRFQ guarantees a delay
bound Dc(pki ) to start serving packet pki by

Dc(pki ) ≤ max
r

(
n∑

j=1,j �=i

sj,r). (14)

Proof: In collapsed H-DRFQ, the scheduler firstly trans-
forms the hierarchical structure into a flat tree and then sched-
ules the flows according to DRFQ. Therefore, the packet delay
bound of collapsed H-DRFQ can be computed using the same
method as DRFQ. Meanwhile, as shown in (14), for a flat
scheduler, the packet delay bound has nothing to do with the

flows’ weights. Therefore the packet delay bound of collapsed
H-DRFQ is the same as that of DRFQ since collapsed H-DRFQ
only changes the weights of physical flows after flatting the
hierarchy. Moreover, the packet profiles within the same leaf are
assumed to be the same in collapsed H-DRFQ, i.e., s↑i,r = si,r.
Thus the packet delay bound is maxr(

∑n
j=1,j �=i sj,r).

Theorem V.4. The dove-tailing H-DRFQ guarantees a delay
bound Dt(pki ) to start serving packet pki by

Dt(pki ) ≤
H−1∑

w=1

w−1∏

h=0

max
r

(
∑

j∈U(Sib(Pw(i)))

φPh(i)

μPh+1(i)

sj,r)+

max
r

(
∑

j∈Sib(i)

sj,r),

(15)

where U(i) denotes the set of leaves that share the same
ancestor fi.

Proof: Since node Ph+1(i) is worst-case fair with the
logical queue at node Ph(i), the following holds for

WPh(i)(a
k
i , d

k
i ) ≥

φPh(i)

μPh+1(i)

WPh+1(i)(a
k
i , d

k
i )− αPh(i), (16)

where WPh(i)(a
k
i , d

k
i ) is the amount of service received by flow

Ph(i) in [aki , d
k
i ], and h = 0, . . . , H − 1. Then we have

Wi(a
k
i , d

k
i ) ≥

φi

μP (i)
WP (i)(a

k
i , d

k
i )− αi

≥ φi

μP (i)
[
φP (i)

μP 2(i)
WP 2(i)(a

k
i , d

k
i )− αP (i)]− αi

≥ . . .

≥
H−1∏

h=0

φPh(i)

μPh+1(i)

WR(a
k
i , d

k
i )−

(
H−1∑

w=1

w−1∏

h=0

φPh(i)

μPh+1(i)

αPw(i) + αi).

(17)
Therefore, we have

Dt(pki ) =
H−1∑

w=1

w−1∏

h=0

φPh(i)

μPh+1(i)

αPw(i) + αi. (18)

Meanwhile, Lemma V.2 indicates that
αPh(i) ≤ max

r
(

∑

j∈Sib(ph(i))

s↑j,r). (19)

For each internal node fPh(i) (0 < h < H), we have s↑
Ph(i),r

=

maxj∈C(Ph(i))(s
↑
j,r) ≤ ∑

j∈C(Ph(i)) s
↑
j,r. Consequently, the

right side of (18) can be further bounded as flowing,

Dt(pki ) ≤
H−1∑

w=1

w−1∏

h=0

max
r

(
∑

j∈U(Sib(Pw(i)))

φPh(i)

μPh+1(i)

sj,r)+

max
r

(
∑

j∈Sib(i)

sj,r).

(20)

A direct corollary (see Corollary 1) derived from (17) and
(7) provides a rigorous formulation of the ideal service share
received by each leaf node in a hierarchy.
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Corollary 1. The ideal dominant share received by each
physical flow fi in H-DRFQ is

H−1∏

h=0

φPh(i)

μPh+1(i)

. (21)

Given this ideal service share received by a flow in a
hierarchy, we can rigorously prove that H-DRFQ can provide
hierarchical share guarantees.

Theorem V.5 (Hierarchical Share Guarantee). H-DRFQ satis-
fies the Hierarchical Share Guarantee property.

Proof: According to the method of generating virtual
packet profile of internal queues shown in Equation (2), we
have

skq,r =
∑

i∈C(q)

lki,rφi =
∑

i∈C(q)

ski,r
μk

φi ≤
∑

i∈C(q)

φi = φq. (22)

Thus, μq = μk
q = maxr(s

k
q,r) ≤ φq . Therefore, for each item

in (21), we have
φPh(i)

μPh+1(i)

≥ φPh(i)

φPh+1(i)

, (23)

as μPh+1(i) ≤ φPh+1(i) for h = 0, . . . , H − 1. Since
φ
Ph(i)

φ
Ph+1(i)

denotes the hierarchical share guarantee we defined in Sec-
tion III-B, (23) indicates that H-DRFQ satisfies hierarchical
share guarantee property.

The next corollary compares the delay bounds exhibited by
collapsed H-DRFQ and dove-tailing H-DRFQ.

Corollary 2. The delay bound of dove-tailing H-DRFQ Dt(pki )
always outperforms the delay bound of collapsed H-DRFQ
Dc(pki ). That is,

max(Dt(pki )) ≤ max(Dc(pki )). (24)

Proof: We observe that the upper bound of Dt(pki ) (see
(20)) can be regarded as a linear transformation of the delay
bound of Dc(pki ) (see (14)). Specifically, expect for the last
term, each item of the bound of Dt(pki ) is equivalent to the
product of its corresponding item of the bound of Dc(pki ) and a
parameter

∏w−1
h=0

φ
Ph(i)

μ
Ph+1(i)

. Moreover, this parameter is less than

or equal to 1, as
φ
ph(i)

μ
Ph+1(i)

denotes the ideal dominant share of
fPh(i) and is always less than or equal to 1. And the last term of
both bounds are the same. Therefore, we have max(Dt(pki )) ≤
max(Dc(pki )).

D. Discussion

Although the delay bound of dove-tailing H-DRFQ is always
less than or equal to the delay bound of collapsed H-DRFQ (i.e.,
max(Dt(pki )) ≤ max(Dc(pki ))), this does not necessarily in-
dicate that dove-tailing H-DRFQ always outperforms collapsed
H-DRFQ in packet delays. We will verify this point in Section
VI-B through extensive simulations. In this subsection, we only
give qualitative theoretical analysis.

The delay bound calculated in Dc(pki ) may not be tight.
Intuitively, the reason that a packet comes to an idle flow
may have to wait for a long time is that some packets related

TABLE I
LINEAR MODEL FOR CPU PROCESSING TIME IN 3 MIDDLEBOX MODULES.

MODEL PARAMETERS ARE BASED ON THE MEASUREMENT RESULTS.
REPORTED IN [11].

Module CPU processing time (μs)
Basic Forwarding 0.00286 × PacketSizeInBytes + 6.2

Statistical Monitoring 0.0008 × PacketSizeInBytes + 12.1
IPSec Encryption 0.015 × PacketSizeInBytes + 84.5

to it have received more service than expected in a previous
time period. In the case of non-hierarchical fair queueing,
these packets must belong to the same flow i. In the case of
hierarchical fair queueing, these packets may belong to flows
that share the same ancestors with flow i. Therefore, WFI
does not bound delay tightly using a flat or non-hierarchical
scheduler since it does not take into account the fact that
packets from the same flow may receive more service in a
previous time period. However, WFI is more important in
bounding the delay using a hierarchical scheduler because the
extra service received in the previous time period may have
been received by a flow other than the one being considered [9].

VI. PERFORMANCE EVALUATION

In this section, we present simulation experiments to (1)
show the resource shares of the flow over time and confirm that
both H-DRFQ algorithms offer hierarchical share guarantees,
(2) show the difference in scheduling delay between collapsed
H-DRFQ and dove-tailing H-DRFQ. For the purpose of verify-
ing, we had two independent simulations, each corresponding
to a hierarchical structure.

A. Dynamic Hierarchical Allocation

In this section, we demonstrate the dynamic hierarchical
allocations on a simple hierarchy shown in Fig. 2a. To congest
middlebox resources, we initiate 3 UDP flows, each sending
25,000 1300-byte packets per second. We configure the flows
such that: (1) f1 only undergoes basic forwarding, which is
bandwidth bound, (2) f2,1 requires statistical monitoring, which
is also bandwidth-bound but uses slightly more CPU than basic
forwarding, (3) f2,2 undergoes IPSec, which is CPU-bound.

On the one hand, according to the measurement results
in [11], the CPU processing time follows a simple linear model
based on packet size and are summarized in Table I. On the
other hand, the link transmission time is proportional to the
packet size, and the output bandwidth of the middlebox is set
to 200 Mbps, the same as [11].

Fig. 5 shows the dynamic resource share allocated to the
three physical flows over time using the two H-DRFQ algo-
rithms. Although the scheduling orders of packets in the two
algorithms are not exactly the same, it provides the same results
of resource shares allocated to each flow viewed from a long
time scale perspective. Since f1 is bandwidth-bound and is the
only active flow during time interval [0, 5], it receives 20%
of the CPU share and all the bandwidth. In [5, 10], f1 and
f2,1 are active. Although the weight of f2,1 is 0.25, at this
point it has no sibling nodes. Therefore, the resources that are
supposed to be allocated to f2,2 are allocated to f2,1. That is,
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Fig. 5. Shares of three competing hierarchical flows arriving at different times.
Flow 1, Flow 2,1 and Flow 2,2 respectively undergo basic forwarding, statistical
monitoring and IPSec.

the weight of f2,1 during [5, 10] can be regarded as 0.5. As
a result, the dominant shares of f1 and f2,1 in [5, 10] are the
same. Meanwhile, their bandwidth shares are also the same as
they are both bandwidth bottleneck. Later, when f2,2 becomes
active after 10s, all the three flows are backlogged during the
time interval [10, 17]. Since f2,1 and f2,2 is a pair of sibling
nodes, their dominant shares are supposed to be the same, as
the figure indicates. Since f2,2 is CPU-bound, it grabs only
33.3% of the bandwidth allocated to f2 (i.e., 16.7% of the
total bandwidth), yet is allocated 66.7% of the CPU allocated
to f2. Meanwhile, since the arrival of f2,2 only leads to the
reallocation of the resources allocated to f2, the CPU share,
bandwidth share, dominant share of f1 remain to be the same
until f1 finishes in around 17s. Similar DRFQ allocations are
observed between each pair of sibling nodes in subsequent time
intervals. Through the whole process, we see that H-DRFQ
algorithms can quickly adapt to traffic dynamics, providing
predictable hierarchical share guarantees cross flows.

B. Delay Comparison

We next compare the packet delay under three schedulers,
collapsed H-DRFQ, dove-tailing H-DRFQ and DRFQ, using
a more complicated hierarchy shown in Fig. 6. By using the
DRFQ scheduler we remove the hierarchical structure of the
hierarchy shown in Fig. 6 but remain the weights of the leaves,
thus the DRFQ scheduler schedules the leaves using their
weights shown in the figure. We generate 150 UDP flows that
start in serial every 0.1s, and these flows are divided into 15
groups to be submitted to each leaf node of the hierarchy. A
flow randomly chooses one of the three middlebox modules to
pass through, and the order of flows submitted to the leaves
keeps the same across different algorithms. Let L denote the
level of a hierarchy, which is the number of edges from a node
to its root. To congest the VNF resources, the flow is set to send
10,000 UDP packets per second and the packet sizes uniformly
drawn from 200 B to 1400 B, which are the typical setting
for Ethernet. For each packet, we record its scheduling delay,

N1

N2

N3

NR

.3 .6 .025 ……

.06

.036

UDP-1

UDP-9

UDP-15

UDP-2 UDP-5

……

UDP-6 UDP-8

UDP-10

UDP-13 UDP-14

UDP-12

.025

UDP-11

Level-1

Level-2

Level-3

Level-4

.06 .06

.36

.036 .072.216

.0648 .0432 .0108

Fig. 6. Hierarchy used in Section VI-B

using collapsed H-DRFQ, dove-tailing H-DRFQ and DRFQ,
respectively.

Fig. 7a depicts the CDF of the scheduling delay a packet ex-
periences, from which we see that all packets can be scheduled
in less than 6ms after their arrivals, among which nearly 80%
of the them can be scheduled in 0.8ms. Further investigation
reveals, comparing with collapsed H-DRFQ, that more packets
in dove-tailing H-DRFQ suffer shorter delays (0ms-0.5ms),
however, this is achieved at the expense of more packets to
in dove-tailing H-DRFQ suffer longer delays (3ms-5ms). A
detailed statistics breakdown is given in Fig. 7b and Fig. 7c
showing the average and maximal delays a packet experiences
in different levels. We notice that the mean scheduling delays
of nodes from L2, L3 and L4 using DRFQ are longer than
those using the H-DRFQ algorithms, however, the delays of
packets from L1 show the opposite results. This indicates that
physical nodes benefit from having longer distances to their
root. We also observe that in general the lower the level is,
the shorter the delay a packet experiences. Particularly, packets
using collapsed H-DRFQ behaves better in higher levels (i.e.,
L1 and L2), while dove-tailing H-DRFQ behaves better in lower
levels (i.e., L3 and L4).

Fig. 8 changes the weights of the nodes and shows the
mean scheduling delay a flow experiences with respective to
its weight in each of the four levels in the hierarchy. We
observe that delay decreases as the weight increases. Still,
collapsed H-DRFQ suffers shorter delays in L1 and L2, while
dove-tailing H-DRFQ suffers shorter delays in L3 and L4.
However, with the increase of weights, the scheduling delays
experienced by the same packets tend to be the same using
the two H-DRFQ algorithms. Interestingly, the delay bound of
the collapsed H-DRFQ remains to be the same as the weight
increases. However, the delay bound of the dove-tailing H-
DRFQ decreases as the weight increases, showing the same
variation tendency with the actual delays packets experience.
As the qualitative theoretical analysis in Section V-D indicates,
the upper bound of Dc(pki ) is not tight. Each of the two H-
DRFQ algorithms has its own advantage with respect to the
level of flows in the hierarchy.

VII. CONCLUSIONS

In this paper, we designed two new hierarchical multi-
resource fair queueing algorithms, collapsed H-DRFQ and
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Fig. 7. Scheduling delay comparison between collapsed H-DRFQ and dove-tailing H-DRFQ of the hierarchy shown in Fig. 6.
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Fig. 8. Scheduling delay comparison between collapsed H-DRFQ and dove-tailing H-DRFQ with respect to weights.

dove-tailing H-DRFQ. Collapsed H-DRFQ converted the hier-
archy into a flat tree and then used the flat tree as a DRFQ
scheduler, while dove-tailing H-DRFQ applied dove-tailing
DRFQ between each pair of sibling nodes. Both algorithms pro-
vided hierarchical share guarantees. We studied the differences
between the two H-DRFQ algorithms through comparing their
scheduling delays. Theoretical analysis indicated that dove-
tailing H-DRFQ worked better by providing a smaller delay
bound. However, experimental results showed each of the two
H-DRFQ algorithms had its own advantage with respect to the
level of flows in the hierarchy.
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